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Global Solution of the Generalized Abel Integral Equation 
by Implicit Interpolation* 

By H. Brunner 

Abstract. The construction of a (global) approximate solution for a given generalized 
Abel integral equation may be viewed as a problem of (implicit) interpolation in a pre- 
scribed linear space. In this paper, piecewise polynomials (extended spline functions) of a 
given degree and of class C are used to generate such an approximating function. Results 
on convergence and error bounds are given, and the practical application of this method is 
illustrated by a numerical example. 

1. Introduction. The generalized Abel integral equation has the form 

fX G(x, t) 
(1.1) t ( y(t) dt = g(x), x E I = [0, a], 0 < a < 1. 

It is well known (see, for example, [1, p. 26]) that (1.1) possesses a (unique) solution 

y(x) E C(I) if G(x, t) and g(x) satisfy the following conditions (which are assumed 

to hold throughout this paper): 

G(x, t) E C(T), OG(x, t)/Ox C CT), 
(i) 

where T = {(x, t) :0 < t < x < a}. 

(ii) ~~~~~~G(x, x) X O. x E I. 

(iii) F(x) fX 
g :(t) dt C C'(I). 

Observe that under these conditions the limit 

(1.2) y(O) = lim(g(x).xa I(1 - a)/G(O, 0)) 
zoo+ 

exists. 

Let N ? 1 and m ? 1 be given integers, and define the points { S } by 0 = 4o < 

< ... < th = a. Let ZN = {k :k = 0, 1, , N- 1}. The exact solution y(x) 
of (1.1) will be approximated by piecewise polynomials (or extended spline functions) 

of degree m which are of continuity class C(I) and have the knots ZN. We denote 

this class of functions by Sm(?)(ZN). An element s C Sm")(ZN) has a unique repre- 
sentation of the form 
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S(X) = (X) + - I m-1I 

(1.3) s(x) = p(x) + Z Z Yk*(X - 

k=l v=O 

where p(x) C 7rm (see also [3]). Here, 

(x -I) (X _Fn X > B 

An approximate solution s C Sm?0)(ZN) for (1.1) will be found by using an approach 
which may be regarded as implicit interpolation. To be precise, let 

(1.4) 6k = XkAo <K XA1 < K. Xk.m = Sk+l k = 0, 1, . , N - 1. 

Define the linear functionals {L,. j } by setting 

rk j 

(1.5) LAni(f) K(xk.i, t).f(t) dt (f G CM)), 

j = 1, . , m; k = 0O.. *C N - 1, 

with K(x, t) G(x, t)/(x - t)a. We wish to find an element s C Sm'?'(ZN) such that 

(1.6a) Lk. (s) = Lk. (y) = g(xk.i), j = 1, , m; k = 0 . , N - 1, 

satisfying 

(1.6b) S(0) = y(0). 

THEOREM 1. Let G and g in (1.1) satisfy the conditions (i), (ii), (iii) above, and 
assume that G(x, t) 5 0 in T. Then there exists a unique s C Sm(O)(ZN), with p C ro, 
which satisfies the interpolating conditions (1.6). 

Proof. Define the functions { xi(x): i = 0, , mN} by 

(pi W= - i= ,. 

= (X-)+ i= 19 * m, 

i-(N-1) = - 
= (X - + i m(N- 1) + 1, imN. 

Furthermore, let 

x 

4i(i = J K(x, t).<p(t) dt, i = 0, ... , m N. 
0 

We have, by assumption on G, t4f C C(I), with 4tK(x) 0 on [0, t] for i > vm. 
It is easily seen that these functions { p%(x)} are linearly independent on I. However, 
they do not satisfy the Haar condition on I since, for ai = 0, i = 0, ... , vm; a, 5 0, 

> vm, 4(x) = E %'zJ a, 4,(x) vanishes identically on [0, tJ. On the other hand, 
since G(x, t) P 0 in T, the functions {1t'%(x): i = vm + 1, ... , (v + )m} do satisfy 
the Haar condition on the left-open part of a-= [t, ,+J1], since any nontrivial function 

(v+1)m x (v+l)m 
E at,+(x) = K(x, t).(t - Er)* j a,(t - vm dt 

i=vm+l V i=vm+l 
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has at most (m - 1) zeros in (Q,, t,,J. Hence the linear functionals (1.5) are linearly 
independent in the conjugate space of Sm.(0(ZN). This implies (see also [4, p. 26]) 
that for a given value a, there exists a unique set {al, * , a,, } such that 

Lks, aei pi)= g(xt.;), j = 1, , m; k = 0, N - 1. 
i .o 

This completes the proof of Theorem 1. 
The above proof suggests that the unknown coefficients in (1.3) may be computed 

recursively, using the intervals {I k: k = 0, ... , N - } . For computational purposes, 
we shall choose for s E Sm'?'(ZN) the representation 

(1.7) s(x) = Sk(X) = Ad E (X - h) ' X G Ok, 
i-_0 JV. 

which is equivalent to (1.3), with p = co.o. Since s E C(I) we have 

(1.8a) Ckoo = Sk-l(,k) k. = 1, , N - 1, 
and we choose 

(1.8b) co.o = so(to) = y(O) (given by (1.2)). 

(We note that another possible representation for s(x) is (1.7) with the functions 
{(x - J)' } replaced by the Chebyshev polynomials { T,(x)} for the interval Irk. 

This form is recommended if m is large. Compare also [3].) 
The unknown coefficients { c*., } in (1.7) are now determined recursively by re- 

quiring that, for a given k, 

(1.9) Lt.i(s) = Lt.,(y) = g(xk.2), j 1, I m, 
and by observing the conditions (1.8). Theorem 1 implies that each of the linear 
systems (1.9) possesses a unique solution {Ic.i ... , * c. I* I k = 0, ... , N - 1. 

It is clear that Theorem 1 will in general not remain valid if G(x, t) vanishes at 
some points in T (we have G(x, t) 0 0, by assumption (ii) above). In such cases, the 
choice of the points {It,} and { x,., } will be governed by the function G under con- 
sideration, in order to get a unique solution for (1.9). 

Generalized Abel integral equations of the form (1.1) have recently been considered 
by Weiss [7] and by Weiss and Anderssen [8], who used product integration techniques 
to generate approximate values to y(x) at given discrete points in I. It may be of 
interest to note here that an idea related to the ones used in product integration and 
in the approach taken in this paper was introduced by Huber [6] in 1939 to find 
approximate solutions of linear first-kind Volterra integral equations with continuous 
kernels. 

2. Convergence and Error Bounds. For a given set of knots ZN, define 

Hk = tck+1 - k k =0, ... , N - 1, 
H = max(Hk), H = min(Hk), 

(IC) (IC) 

o, = wsHa, Nd= 1, t, c 

For simplicity in notation, we shall deal with the case of uniformly spaced points 
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{xA;. j }, i.e., Xk. j = (k + j hk, j = 1, . * * , m, with hk = Hk/m, k = 0, * , N - 1. 
Define the error function e(x) by e(x) = s(x) - y(x). Clearly, e E C(I). The approxi- 
mating function s E Sm0("(Zy) shall be given by (1.7). 

LEMMA 1. Assume that y E Cm 1(I), and let Bk = (3k.1, #k * m)T be defined by 

(2.1) Ck.v = Y )( k) + 3kv.(hk) i V = 1, - , m; k = , - , N - 1. 

If N c, H -* 0(with 0 = 0, iN = a) such that r, ? y for all N, then 
m 

IIBkI1l = E Iflk.vI < B for all k. 
v=l 

Proof. Let 

(pk. (X) = (x - Ak)'/hk V = 1, * m + 1; k =0 , N - 1. 

For x C 0-k, we then have 

(2.2) e(x) = e(Mk) + hk *1( ! sqk.v(x) - Tk(Y) k m+l(X)) 

where Tk(y) = Y(rM+l) (nk(x))/(m + 1)!, 6k < flk(X) < x. By construction of s(x), the 
error function satisfies 

(2.3) Lk.i(e) = 0, 1 = 1, * , m; k = 0, * , N - 1. 

We proceed by induction: For k = 0 we obtain 
in xop . j p20. 

(2.4) E o f K(Xo.-i tPo.-(t) dt = f K(xo.i, t) * TO(y)op.m+i(t) dt 
v=l V! 0 s0 

(using e(to) = 0; a trivial modification will yield results similar to those below if 
eto) = O(H(), q _ 1). 

By definition of the functions {I <p.A.(x)}, and by assumptions on G, g, and y, the 
right-hand side of (2.4) is O(ho0- ). Furthermore, the matrix with elements 

! J G(xo0., xO.j).po.,(t)-(xo.j - t)yadt (j, v 1, * * *, m) 

is essentially a Vandermonde matrix and hence nonsingular. A simple calculation 
yields for these elements the expression 

G(x0.i, x0 .i) a 
(I- a).v.l( + h1- a) 

with G(x, x) # 0, x C I. Since G(x, t) C C(T), there exists a 50 > 0 such that for all 
ho C (0, 50) the solution of (2.4) satisfies 0%., = 0(1), P = 1, * * *, m. We thus obtain 

e(~i) = e(Qo) + mh1m+l X fo-P m + 0(hm+1) = (Hl+') 
v=1 

or, since H ? mho < H, 

e~i)= 0(Hm+l). 

Let now k > 0. It follows from (2.3) and (2.2) that 
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hk E1 K(xk * (k j , s k*(t) dt 

Xk.i k-1 

= -e(ik) J K(xk. t) dt - e(Q,) ] K(xk .3 t) dt 
Sk ,A=0 

k-1 m rt+1 
- ?Lm+ E O K(xk.3, t)0p.V(t) dt + O(Hm+2-a). 

Jh=O V=1 V ! 

This may be rewritten as 
m X k. i 

(2.5) E v ! J G(xk-j, t)(pk.v(t)'(Xk.i - t)y dt = 09(H -). 

Here we have made use of the fact that h,.,Ihk ? H/H = 7WN < -y for all N, and kH < 

NH < -yNH ? -ya. We conclude, by an argument similar to the one used for k = 0, 
that there exists a 5k > 0 such that for all hk C (0, 5k) the unique solution of (2.5) 
satisfies Ok-v = 9(1), V = 1, * * , m, and k ? N. 

THEOREM 2. Under the assumptions of-Lemma 1, 

(2.6) le(x)l ? yaHm(B + Mm+,), X C ZN. 

Here, B is defined in Lemma 1, and 

Mm+, = max 1y(m+i)(x)j/(m + 1)!. 

Proof. From (2.2) we find, using the fact that e C C(I), 

Iek(ik)I ? Iek-l(k_1) + (m~hk-l)m (Z ! + Mm+i) 

-< ek-l(k-l) + Hm+l * (B + Mm+i), 

where we have set ek(x) = Sk(X) - y(x), x C 7k. By a well-known result on inequalities 
of this type (see, for example, [5, p. 18]), we obtain (using again e(Q0) = 0) 

TABLE I 

X= ,k e(X)for X = 4k e(x)for x = k e(x)for 
k (N= 90) m = 1 k (N= 45) m = 2 k (N= 60) m = 3 

1 0.2 5.07.10-2 1 0.4 -2.65*10-2 1 0.3 1.46-10-2 
2 0.4 -9.68-10-3 2 0.8 -6.18-10-3 2 0.6 -2.0110-3 
3 0.6 6.68.10-3 3 1.2 -1.41-10-3 3 0.9 4.73-10-4 

30 6.0 7.22-10-5 15 6.0 9.63-10-6 20 6.0 5.67.10-6 

60 12.0 2.55-10-5 30 12.0 4.01-10-6 40 12.0 1.99-10-6 

90 18.0 1.39-10-5 45 18.0 2.28-10-6 60 18.0 1.08-10-6 
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(ek(k)I ? kHm+l(B + Mm+i) < NH-Hm * (B + Mm+,) 

< yaHm(B + Mm+,), 

for we have assumed that the ratio 7rN = H/f remains bounded as N -* o: 7rN < 

Hence NH < -yNXI < ya. 
Theorem 2 remains essentially valid if we consider e(x) for x $ ZN, x E I. We have 
THEOREM 3. Under the assumptions of Lemma 1, 

(2.7) le(x)I < Hm (7a(B + Mm+i) + /(H)) for all x E I. 

Proof. For x C Sk we get, from (2.2) and (2.6), 

le(x)j ?< e(Qk)t + Hm+.(IttBktl| + Mm+l) 

? Hm(ya(B + Mm+,) + H(B + Mm+,)) 

= Hm(B + Mm+i)-(7a + H). 

We conclude by observing that the degree m of s(x) may be treated as a parameter 
which may be changed anytime during the computation. Furthermore, the knots 
ZN need not be chosen a priori but may be selected during the computational process, 
according to the character of the given equation (1.1) and its exact solution y(x). 

3. Numerical Example. We illustrate the application of the method of piecewise 
polynomials described above by solving the Abel integral equation 

TABLE II 

Change of stepsize (spacing of knots) during computation: 
Initial spacing: Hk = 0.01, k = 0.** , 50. 

For k > 50: Hk = 0.5. 

k X = k e(x) (m = 2) 

1 0.01 -4.19. 10-3 

2 0.02 -9.77.10-4 
3 0.03 -2.24*10-4 

49 0.49 3.20*10-7 
50 0.50 3.11.10-7 
51 1.00 -5.81*10-4 
52 1.50 -2.87*10-4 

84 17.50 -3.35*10-7 
85 18.00 -3.12 10-7 
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(3.1) (X t) dl = X, ? < x < 18. 

Its exact solution y(x) = 2x'2/7r has derivatives which are unbounded at x = 0. 
Equation (3.1) was solved numerically by functions s C Sr?0'(ZN) for r = 1, 2, 3. 

A selection of numerical results is listed in Table I. Table II shows, for s E S2( & ) VA 

how a relatively large change in stepsize (from Hk = 0.01 to Hk = 0.5) affects the 
numerical results. 

All the computations were performed on the CDC 6400 (single precision) at 
Dalhousie University Computer Centre. 

Department of Mathematics 
Dalhousie University 
Halifax, Nova Scotia, Canada 

1. M. BOCHER, An Introduction to the Study of Integral Equations, 2nd ed., Cambridge 
Univ. Press, London, 1914. 

2. H. BRUNNER, "The numerical solution of the generalized Abel integral equation by 
piecewise polynomials," Notices Amer. Math. Soc., v. 19, 1972, p. A-662. (Abstract) 

3. M. G. Cox, "Curve fitting with piecewise polynomials," J. Inst. Math. Apple , v. 8, 
1971, pp. 36-52. MR 44 #4870. 

4. P. J. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1963. MR 28 
#393. 

5. P. HENRICI, Discrete Variable Methods in Ordinary Diflerential Equations, Wiley, 
New York, 1962. MR 24 #B1772. 

6. A. HUBER, "Eine Naherungsmethode zur Auflbsung Volterrascher Integralgleichungen," 
Monatsh. Math. Phys., v. 47, 1939, pp. 240-246. 

7. R. WEISS, "Product integration for the generalized Abel equation," Math. Comp., 
v. 26, 1972, pp. 177-190. MR 45 #8050. 

8. R. WEISS & R. S. ANDERSSEN, "A product integration method for a class of singular 
first kind Volterra equations," Numer. Math., v. 18, 1972, pp. 442-456. 


